Downscaled Microclimates

John Dingman USGS – Sacramento, CA jdingman@usgs.gov

Talk Outline

- Overview of the GCMs
- Processing Steps
 - Progress
- Look at completed datasets

Global Climate Models (GCMs)

- CMIP 3:
 - 23 Models
 - Scenarios:
 - B1
 - A1B
 - A2
- CMIP 5:
 - 20 Models
 - Scenarios:
 - RCPs (2.6, 4.5, 6.0, 8.5)
- Variables
 - ppt, tmn, tmx, (tas)

Processing Steps

- Reproject:
 - WGS84 -> CA Teale Albers NAD83
 - Bilinear image resampling
- Regrid:
 - 800m -> 270m
- PET:
- BCM (monthly):
 - AET, EXC, MLT, PCK, SBL, SNW, STR, CWD, RCH, RUN
- Addgrids (WY, Oct. 1- Sept. 30):
 - AET, CWD, PET, PPT, RCH, RUN
- Linreg (10 water years):
 - AET, PET, PPT, CWD, DJF, JJA
 - AVE, COV, INT, RSQ, SLP, STD, VAR

Connected in parallel (RAID0) non-compressed (3 TB) Compressed (408 GB)

Linreg Proofs

- Variables:
 - AET, PET, PPT, CWD, DJF, JJA
- Using python arc.mapping proofs
 - Allows for automated map creation and away to check the datasets

Proof_linreg_pet_2010_2019.py - C:\Proof_linreg_pet_2010_2019.py	23
Edit Format Run Options Windows Help	
Addgrids proof	-
Created on: 2012-09-01	
Created by: John Dingman (jdingman@usgs.gov)	
Description: Creates proofs of 6 output variables from addgrids.exe (AET,	CWD,
import arcpy module	
bort arcpy	
py.env.overwriteOutput = True	
AVE	
Local variables:	
<pre>2010_2019_asc = "E:\\miroc3_2_medres.sresAlB.run1\\pet2010_2019_ave_miro 2010_2019 = "E:\\miroc3_2_medres.sresAlB.run1\\ave_2010_2019" 2020_2020 = "E:\\miroc3_2_medres.sresAlB.run1\\ave_2010_2019"</pre>	c3_2
zolo zolo abiz - L. (Millos z Medicastala, Mill(Ave zolo zolo	
2010_2019_lyr = "E:\\miroc3_2_medres.sresA1B.run1\\ave_2010_2019.lyr"	
Process: ASCII to Raster	
py.ASCIIToRaster_conversion(ave_2010_2019_asc, ave_2010_2019, "FLOAT")	
Process: Build Pyramids And Statistics	
py.BuildPyramidsandStatistics_management(ave_2010_2019_asc2, "INCLUDE_SUB	DIRE
Process: Make Raster Layer	
py.MakeRasterLayer_management(ave_2010_2019_asc2, Output_raster_layer_ave	, ""
Process: Save To Layer File	
py.SaveToLayerFile_management(Output_raster_layer_ave, ave_2010_2019_lyr,	·**)

Create +		9 G G G		2
4 1 / 10	R O - + 83.7%		Tools Comment	Share
	AVE Vergence Vergence High: 1597.28 Low: 0	WD_2002_2009_miroc3_2	medres_sresA1B_run1	
	SLP 945,2002,2009 Volue Hgir, 24.865 Loc: -34.865	510 515_2002_2009 Volter, 173.681 Let: 0	VAR Var, 2002,2009 Value High: 30165,2 Low: 0	

INT AVE COV RSQ int_2002_2009 cov_2002_2009 ave_2002_2009 rsq_2002_2009 Value Value High: 0.4672 Value High : 3901.11 Value High : 3885.62 High : 0.597 Low : 0.0912 Low : 53.5083 Low : 46.525 Low : D SLP VAR STD What are we looking at? slp_2002_2009 var_2002_2009 std_2002_2009 Value • High : 437007 Value High: 71.3274 Value • High : 661.065 Precipitation Low : -36.3405 Low : 9.0257 Low: 81.5

PPT_2002_2009_miroc3_2_medres_sresA1B_run1

JJA_2010_2019_miroc3_2_medres_sresA1B_run1

JJA 2020 2029 miroc3 2 medres sresA1B run1

JJA 2030 2039 miroc3 2 medres sresA1B run1

JJA 2040 2049 miroc3 2 medres sresA1B run1

JJA 2050 2059 miroc3 2 medres sresA1B run1

JJA_2060_2069_miroc3_2_medres_sresA1B_run1

JJA 2070 2079 miroc3 2 medres sresA1B run1

JJA 2080 2089 miroc3 2 medres sresA1B run1

JJA 2090 2099 miroc3 2 medres sresA1B run1

Miroc_medres_A1B_2002_2009

Miroc_medres_A1B_2010_2019

Miroc_medres_A1B_2020_2029

Miroc_medres_A1B_2030_2039

Miroc_medres_A1B_2040_2049

Miroc_medres_A1B_2050_2059

Miroc_medres_A1B_2060_2069

Miroc_medres_A1B_2070_2079

Miroc_medres_A1B_2080_2089

Miroc_medres_A1B_2090_2099

Miroc_medres_A1B_2090_2099

Suggestions

Temporal Smoothing:

$$A_{y} = \frac{x_{y-2} + x_{y+1} + x_{y} + x_{y+1} + x_{y+2}}{5}$$

$$A_{y} = \frac{x_{y-5} + x_{y-4} + x_{y-3} + x_{y-2} + x_{y-1} + x_{y} + x_{y+1} + x_{y+2} + x_{y+3} + x_{y+4} + x_{y+5}}{11}$$
More noise

Where,

 A_y = Averaged variable for a given year (CWD, PPT, TMN, TMX, etc.). x = Value y = Year (2005, 2006, 2007 and ...)

Suggestions

• Principle Component Analysis (PCA):

- How different are CWD, PPT, Tmin, Tmax, PET, AET from each other (correlates vs. providing new info)?
 - Space
 - Time
- Distills information:
 - Much of the variability (information) can be captured in the first few components.
 - Where do these variables work at predicting species presence and where do they not?

Var 1